Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(41): 12197-12208, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34586788

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors are considered as potential treatments for coronavirus disease 2019, and dietary polyphenols show promise in SARS-CoV-2 Mpro inhibition based on in silico studies. In the present study, we utilize a combination of biochemical-, surface plasmon resonance-, and docking-based assays to evaluate the inhibition and binding affinities of a series of tannins and their gut microbial metabolites on SARS-CoV-2 Mpro. The tested compounds (2-50 µM) were hydrolyzable tannins, including ellagitannins (punicalagin and ellagic acid) and gallotannins (tannic acid, pentagalloyl glucose, ginnalin A, and gallic acid), and their gut microbial metabolites, urolithins and pyrogallol, respectively. They inhibited SARS-CoV-2 Mpro (by 6.6-100.0% at 50 µM) and bound directly to the Mpro protein (with dissociation constants from 1.1 × 10-6 to 5.3 × 10-5 M). This study sheds light on the inhibitory effects of tannins and their metabolites on SARS-CoV-2 Mpro.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Taninos Hidrolisáveis , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases , SARS-CoV-2 , Ressonância de Plasmônio de Superfície
2.
Nutrients ; 12(7)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707654

RESUMO

Black cumin (Nigella sativa) seed extract has been shown to improve dermatological conditions, yet its beneficial effects for skin are not fully elucidated. Herein, Thymocid®, a chemically standardized black cumin seed extract, was investigated for its cosmeceutical potential including anti-aging properties associated with modulation of glycation, collagen cross-linking, and collagenase and elastase activities, as well as antimelanogenic effect in murine melanoma B16F10 cells. Thymocid® (50, 100, and 300 µg/mL) inhibited the formation of advanced glycation end-products (by 16.7-70.7%), collagen cross-linking (by 45.1-93.3%), collagenase activity (by 10.4-92.4%), and elastases activities (type I and III by 25.3-75.4% and 36.0-91.1%, respectively). In addition, Thymocid® (2.5-20 µg/mL) decreased melanin content in B16F10 cells by 42.5-61.6% and reduced cellular tyrosinase activity by 20.9% (at 20 µg/mL). Furthermore, Thymocid® (20 µg/mL for 72 h) markedly suppressed the mRNA expression levels of melanogenesis-related genes including microphthalmia-associated transcription factor (MITF), tyrosinase-related protein 1 (TYRP1), and TYRP2 to 78.9%, 0.3%, and 0.2%, respectively. Thymocid® (10 µg/mL) also suppressed the protein expression levels of MITF (by 15.2%) and TYRP1 (by 97.7%). Findings from this study support the anti-aging and antimelanogenic potential of Thymocid® as a bioactive cosmeceutical ingredient for skin care products.


Assuntos
Colágeno/metabolismo , Colagenases/metabolismo , Oxirredutases Intramoleculares/metabolismo , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/prevenção & controle , Glicoproteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Nigella sativa/química , Oxirredutases/metabolismo , Elastase Pancreática/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Sementes/química , Animais , Linhagem Celular Tumoral , Cosméticos , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Extratos Vegetais/uso terapêutico , Higiene da Pele
3.
Food Funct ; 11(6): 5105-5114, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32356551

RESUMO

Phytochemicals from functional foods are common ingredients in dietary supplements and cosmetic products for anti-skin aging effects due to their antioxidant activities. A proprietary red maple (Acer rubrum) leaf extract (Maplifa™) and its major phenolic compound, ginnalin A (GA), have been reported to show antioxidant, anti-melanogenesis, and anti-glycation effects but their protective effects against oxidative stress in human skin cells remain unknown. Herein, we investigated the cytoprotective effects of Maplifa™ and GA against hydrogen peroxide (H2O2) and methylglyoxal (MGO)-induced oxidative stress in human keratinocytes (HaCaT cells). H2O2 and MGO (both at 400 µM) induced toxicity in HaCaT cells and reduced their viability to 59.2 and 61.6%, respectively. Treatment of Maplifa™ (50 µg mL-1) and GA (50 µM) increased the viability of H2O2- and MGO-treated cells by 22.0 and 15.5%, respectively. Maplifa™ and GA also showed cytoprotective effects by reducing H2O2-induced apoptosis in HaCaT cells by 8.0 and 7.2%, respectively. The anti-apoptotic effect of Maplifa™ was further supported by the decreased levels of apoptosis associated enzymes including caspases-3/7 and -8 in HaCaT cells by 49.5 and 19.0%, respectively. In addition, Maplifa™ (50 µg mL-1) and GA (50 µM) reduced H2O2- and MGO-induced reactive oxygen species (ROS) by 84.1 and 56.8%, respectively. Furthermore, flow cytometry analysis showed that Maplifa™ and GA reduced MGO-induced total cellular ROS production while increasing mitochondria-derived ROS production in HaCaT cells. The cytoprotective effects of Maplifa™ and GA in human keratinocytes support their potential utilization for cosmetic and/or dermatological applications.


Assuntos
Acer/química , Desoxiglucose/análogos & derivados , Ácido Gálico/análogos & derivados , Peróxido de Hidrogênio/toxicidade , Queratinócitos/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Aldeído Pirúvico/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Citoproteção , Desoxiglucose/farmacologia , Regulação para Baixo , Ácido Gálico/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Mitocôndrias/metabolismo , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo
4.
J Bone Miner Res ; 34(8): 1446-1450, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31220375

RESUMO

Pentosidine is an advanced glycation end product (AGE) associated with fracture in adults with diabetes. AGE accumulation in bone collagen contributes to bone fragility but might also adversely influence bone turnover and, consequently, bone geometry. The relationships between AGEs and bone health have yet to be studied in children. Thus, the objective of this study was to assess relationships between pentosidine and cortical bone volumetric density, geometry, and estimated strength in children. Participants were otherwise healthy black and white boys and girls, ages 9 to 13 years, who were at sexual maturation stage 2 or 3 (N = 160). Tibia and radius cortical bone and muscle area (66% site) were assessed via pQCT. In fasting sera, insulin, glucose, and pentosidine were measured. The Quantitative Insulin Sensitivity Check Index (QUICKI), a measure of insulin sensitivity, was calculated. While controlling for race, sex, maturation, and height, pentosidine negatively correlated with QUICKI (P < 0.05). In unadjusted analyses, pentosidine was associated with lower radius and tibia cortical volumetric bone mineral density, bone mineral content (Ct.BMC), area (Ct.Ar), and thickness (Ct.Th); a larger radius endosteal circumference (Endo.Circ); and lower tibia polar strength strain index (all P < 0.05). While controlling for race, sex, maturation, height, and muscle area, pentosidine was negatively associated with tibia Ct.BMC, Ct.Ar, and Ct.Th but positively associated with Endo.Circ (all P < 0.05). Linear regression revealed a significant interaction between pentosidine and QUICKI in relation to tibia Ct.Th (pinteraction = 0.049), indicating that the negative relationship between pentosidine and Ct.Th was stronger in those with lower QUICKI (ie, greater insulin resistance). This is the first study to report evidence of a potentially adverse influence of AGEs on bone strength in otherwise healthy children. This relationship was strongest in children with the greatest insulin resistance, supporting further work in youth with chronic metabolic health conditions. © 2019 American Society for Bone and Mineral Research.


Assuntos
Arginina/análogos & derivados , Osso Cortical/metabolismo , Resistência à Insulina , Lisina/análogos & derivados , Rádio (Anatomia)/metabolismo , Tíbia/metabolismo , Adolescente , Arginina/sangue , Criança , Feminino , Humanos , Lisina/sangue , Masculino
5.
Int J Mol Sci ; 19(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-29401686

RESUMO

Glycation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), where it potentiates the aggregation and toxicity of proteins such as ß-amyloid (Aß). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models), (4) anti-Aß aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 µg/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 µg/mL) inhibited both thermal- and MGO-induced Aß fibrillation. In addition, the berry ACEs (at 20 µg/mL) reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aß fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Antocianinas/farmacologia , Antioxidantes/farmacologia , Frutas/química , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Antocianinas/isolamento & purificação , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Mirtilos Azuis (Planta)/química , Caspases/genética , Caspases/metabolismo , Linhagem Celular , Fragaria/química , Regulação da Expressão Gênica , Glicosilação/efeitos dos fármacos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Camundongos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Fármacos Neuroprotetores/isolamento & purificação , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Polifenóis/isolamento & purificação , Agregados Proteicos/efeitos dos fármacos , Aldeído Pirúvico/antagonistas & inibidores , Aldeído Pirúvico/farmacologia , Rubus/química , Vaccinium macrocarpon/química
6.
Food Funct ; 8(2): 757-766, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28112327

RESUMO

Oxidative stress and free radical generation accelerate the formation of advanced glycation endproducts (AGEs) which are linked to several chronic diseases. Published data suggest that phenolic-rich plant foods, show promise as natural anti-AGEs agents due to their anti-oxidation capacities. A phenolic-enriched maple syrup extract (MSX) has previously been reported to show anti-inflammatory and neuroprotective effects but its anti-AGE effects remain unknown. Therefore, herein, we investigated the anti-glycation and anti-oxidation effects of MSX using biochemical and biophysical methods. MSX (500 µg mL-1) reduced the formation of AGEs by 40% in the bovine serum albumin (BSA)-fructose assay and by 30% in the BSA-methylglyoxal (MGO) assay. MSX also inhibited the formation of crosslinks typically seen in the late stage of glycation. Circular dichroism and differential scanning calorimeter analyses demonstrated that MSX maintained the structure of BSA during glycation. In the anti-oxidant assays, MSX (61.7 µg mL-1) scavenged 50% of free radicals (DPPH assay) and reduced free radical generation by 20% during the glycation process (electron paramagnetic resonance time scan). In addition, the intracellular levels of hydrogen peroxide induced reactive oxygen species were reduced by 27-58% with MSX (50-200 µg mL-1) in normal/non-tumorigenic human colon CCD-18Co cells. Moreover, in AGEs and MGO challenged CCD-18Co cells, higher cellular viabilities and rapid extracellular signal-regulated kinase (ERK) phosphorylation were observed in MSX treated cells, indicating its protective effects against AGEs-induced cytotoxicity. Overall, this study supports the biological effects of MSX, and warrants further investigation of its potential as a dietary agent against diseases mediated by oxidative stress and inflammation.


Assuntos
Acer/química , Antioxidantes/farmacologia , Colo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colo/citologia , Colo/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Humanos , Fenóis/análise , Espécies Reativas de Oxigênio/metabolismo
7.
Neurochem Int ; 100: 164-177, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27693453

RESUMO

Medicinal plants are promising candidates for Alzheimer's disease (AD) research but there is lack of systematic algorithms and procedures to guide their selection and evaluation. Herein, we developed a Neuroprotective Potential Algorithm (NPA) by evaluating twenty-three standardized and chemically characterized Ayurvedic medicinal plant extracts in a panel of bioassays targeting oxidative stress, carbonyl stress, protein glycation, amyloid beta (Aß) fibrillation, acetylcholinesterase (AChE) inhibition, and neuroinflammation. The twenty-three herbal extracts were initially evaluated for: 1) total polyphenol content (Folin-Ciocalteu assay), 2) free radical scavenging capacity (DPPH assay), 3) ferric reducing antioxidant power (FRAP assay), 4) reactive carbonyl species scavenging capacity (methylglyoxal trapping assay), 5) anti-glycative effects (BSA-fructose, and BSA-methylglyoxal assays) and, 6) anti-Aß fibrillation effects (thioflavin-T assay). Based on assigned index scores from the initial screening, twelve extracts with a cumulative NPA score ≥40 were selected for further evaluation for their: 1) inhibitory effects on AChE activity, 2) in vitro anti-inflammatory effects on murine BV-2 microglial cells (Griess assay measuring levels of lipopolysaccharide-induced nitric oxide species), and 3) in vivo neuroprotective effects on Caenorhabditis elegans post induction of Aß1-42 induced neurotoxicity and paralysis. Among these, four extracts had a cumulative NPA score ≥60 including Phyllanthus emblica (amla; Indian gooseberry), Mucuna pruriens (velvet bean), Punica granatum (pomegranate) and Curcuma longa (turmeric; curcumin). These extracts also showed protective effects on H2O2 induced cytotoxicity in differentiated cholinergic human neuronal SH-SY5Y and murine BV-2 microglial cells and reduced tau protein levels in the SH-SY5Y neuronal cells. While published animal data support the neuroprotective effects of several of these Ayurvedic medicinal plant extracts, some remain unexplored for their anti-AD potential. Therefore, the NPA may be utilized, in part, as a strategy to help guide the selection of promising medicinal plant candidates for future AD-based research using animal models.


Assuntos
Antioxidantes/farmacologia , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantas Medicinais , Algoritmos , Peptídeos beta-Amiloides/farmacologia , Animais , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Plantas Medicinais/metabolismo
8.
Food Funct ; 7(5): 2213-22, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27101975

RESUMO

Glucitol-core containing gallotannins (GCGs) are polyphenols containing galloyl groups attached to a 1,5-anhydro-d-glucitol core, which is uncommon among naturally occurring plant gallotannins. GCGs have only been isolated from maple (Acer) species, including the red maple (Acer rubrum), a medicinal plant which along with the sugar maple (Acer saccharum), are the major sources of the natural sweetener, maple syrup. GCGs are reported to show antioxidant, α-glucosidase inhibitory, and antidiabetic effects, but their antiglycating potential is unknown. Herein, the inhibitory effects of five GCGs (containing 1-4 galloyls) on the formation of advanced glycation end-products (AGEs) were evaluated by MALDI-TOF mass spectroscopy, and BSA-fructose, and G.K. peptide-ribose assays. The GCGs showed superior activities compared to the synthetic antiglycating agent, aminoguanidine (IC50 15.8-151.3 vs. >300 µM) at the early, middle, and late stages of glycation. Circular dichroism data revealed that the GCGs were able to protect the secondary structure of BSA protein from glycation. The GCGs did not inhibit AGE formation by the trapping of reactive carbonyl species, namely, methylglyoxal, but showed free radical scavenging activities in the DPPH assay. The free radical quenching properties of the GCGs were further confirmed by electron paramagnetic resonance spectroscopy using ginnalin A (contains 2 galloyls) as a representative GCG. In addition, this GCG chelated ferrous iron, an oxidative catalyst of AGE formation, supported a potential antioxidant mechanism of antiglycating activity for these polyphenols. Therefore, GCGs should be further investigated for their antidiabetic potential given their antioxidant, α-glucosidase inhibitory, and antiglycating properties.


Assuntos
Antioxidantes/farmacologia , Glucosidases/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Taninos Hidrolisáveis/antagonistas & inibidores , Extratos Vegetais/farmacologia , Sorbitol/antagonistas & inibidores , Acer/química , Dicroísmo Circular/métodos , Desoxiglucose/análogos & derivados , Desoxiglucose/antagonistas & inibidores , Desoxiglucose/química , Digoxina/antagonistas & inibidores , Digoxina/química , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres , Radicais Livres/análise , Frutose/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/antagonistas & inibidores , Ácido Gálico/química , Produtos Finais de Glicação Avançada/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Glicosilação/efeitos dos fármacos , Guanidinas , Taninos Hidrolisáveis/química , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Ferro , Quelantes de Ferro/análise , Extratos Vegetais/química , Polifenóis/farmacologia , Estrutura Secundária de Proteína , Aldeído Pirúvico/análise , Aldeído Pirúvico/metabolismo , Soroalbumina Bovina/efeitos dos fármacos , Sorbitol/análogos & derivados , Sorbitol/química
9.
J Berry Res ; 6(2): 149-158, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28649289

RESUMO

BACKGROUND: The formation and accumulation of advanced glycation end-products (AGEs) are implicated in several chronic human illnesses including type-2 diabetes, renal failure, and neurodegenerative diseases. The cranberry (Vaccinium macrocarpon) fruit has been previously reported to show anti-AGEs effects, attributed primarily to its phenolic constituents. However, there is lack of similar data on the non-phenolic constituents found in the cranberry fruit, in particular, its carbohydrate constituents. Herein, a chemically characterized oligosaccharide-enriched fraction purified from the cranberry fruit was evaluated for its potential anti-AGEs and free radical scavenging effects. OBJECTIVE: The aim of this study was to evaluate the in vitro anti-AGEs and free radical scavenging effects of a chemically characterized oligosaccharide-enriched fraction purified from the North American cranberry (Vaccinium macrocarpon) fruit. METHOD: The cranberry oligosaccharide-enriched fraction was purified from cranberry hull powder and characterized based on spectroscopic and spectrometric (NMR, MALDI-TOF-MS, and HPAEC-PAD) data. The oligosaccharide-enriched fraction was evaluated for its anti-AGEs and free radical scavenging effects by the bovine serum albumin-fructose, and DPPH assays, respectively. RESULTS: Fractionation of cranberry hull material yielded an oligosaccharide-enriched fraction named Cranf1b-CL. The 1H NMR and MALDI-TOF-MS revealed that Cranf1b-CL consists of oligosaccharides ranging primarily from 6-mers to 9-mers. The monosaccharide composition of Cranf1b-CL was arabinose (25%), galactose (5%), glucose (47%) and xylose (23%). In the bovine serum albumin-fructose assay, Cranf1b-CL inhibited AGEs formation in a concentration-dependent manner with comparable activity to the synthetic antiglycating agent, aminoguanidine, used as the positive control (57 vs. 75%; both at 500µg/mL). In the DPPH free radical scavenging assay, Cranf1b-CL showed superior activity to the synthetic commercial antioxidant, butylated hydroxytoluene, used as the positive control (IC50 = 680 vs. 2200µg/mL, respectively). CONCLUSION: The in vitro anti-AGEs and free radical scavenging effects of cranberry oligosaccharides support previous data suggesting that these constituents may also contribute to biological effects of the whole fruit beyond its phenolic constituents alone. Also, this is the first study to evaluate a chemically characterized oligosaccharide fraction purified from the North American cranberry fruit for anti-AGEs and free radical scavenging properties.

10.
Mol Biosyst ; 11(5): 1338-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25789915

RESUMO

Glycation is a spontaneous process initiated by a condensation reaction between reducing sugars and proteins that leads to the formation of advanced glycation endproducts (AGEs). The in vivo accumulation of AGEs is associated with several chronic human diseases and, thus, the search for AGE inhibitors is of great research interest. Hydrolyzable tannins (gallotannins and ellagitannins) are bioactive plant polyphenols which show promise as natural inhibitors of glycation and AGE formation. Notably, the gallotannin, 1,2,3,4,6-penta-O-galloyl-ß-D-glucose (PGG), is a key intermediate involved in the biosynthesis of hydrolyzable tannins in plants. Herein, we investigated the effects of PGG on the individual stages of protein glycation and on protein structure (using bovine serum albumin; BSA). MALDI-TOF data demonstrated that PGG inhibited early glycation by 75% while the synthetic AGE inhibitor, aminoguanidine (AG), was not active (both at 50 µM). In addition, PGG reduced the formation of middle and late stage AGEs by 90.1 and 60.5%, respectively, which was superior to the positive control, AG. While glycation induced conformational changes in BSA from α-helix to ß-sheets (from circular dichroism and congo red binding studies), PGG (at 50 µM) reduced this transition by 50%. Moreover, BSA treated with PGG was more stable in its structure and retained its biophysical properties (based on zeta potential and electrophoretic mobility measurements). The interaction between PGG and BSA was further supported by molecular docking studies. Overall, the current study adds to the growing body of data supporting the anti-AGE effects of hydrolyzable tannins, a ubiquitous class of bioactive plant polyphenols.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Conformação Proteica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Hidrólise , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Int J Nanomedicine ; 9: 5461-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473284

RESUMO

Formation of advanced glycation end products (AGEs) by nonenzymatic glycation of proteins is a major contributory factor to the pathophysiology of diabetic conditions including senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nanoparticles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of analytical methods including ultraviolet-visible spectrometry, high performance liquid chromatography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle diameters ranging from 2 nm to 20 nm inhibited BSA's AGE formation. The extent of inhibition correlated with the total surface area of the nanoparticles. GNPs of highest total surface area yielded the most inhibition whereas those with the lowest total surface area inhibited the formation of AGEs the least. Additionally, when GNPs' total surface areas were set the same, their antiglycation activities were similar. This inhibitory effect of GNPs on BSA's glycation by D-ribose suggests that colloidal particles may have a therapeutic application for the treatment of diabetes and conditions that promote hyperglycemia.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Ribose/química , Soroalbumina Bovina/química , Animais , Bovinos , Glicosilação/efeitos dos fármacos , Ribose/metabolismo , Soroalbumina Bovina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
12.
Food Funct ; 5(11): 2996-3004, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25233108

RESUMO

Advanced Glycation Endproducts (AGEs) are a heterogeneous group of molecules produced from non-enzymatic glycation. Accumulation of AGEs in vivo plays an important role in the pathology of chronic human diseases including type-2 diabetes and Alzheimer's disease. Natural AGEs inhibitors such as the pomegranate (Punica granatum) fruit show great potential for the management of these diseases. Herein, we investigated the in vitro anti-glycation effects of a pomegranate fruit extract (PE), its phenolic constituents [punicalagin (PA), ellagic acid (EA) and gallic acid (GA)], and their in vivo derived colonic metabolites [urolithin A (UA) and urolithin B (UB)]. All of the samples showed anti-glycation activities and PE, PA, and EA were more potent inhibitors than the positive control, aminoguanidine. PE and the purified phenolics also exhibited carbonyl scavenger reactivity. Our study suggests that pomegranate may offer an attractive dietary strategy for the prevention and treatment of AGE-related diseases such as type-2 diabetes and Alzheimer's disease.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Lythraceae/química , Fenóis/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/farmacologia , Dicroísmo Circular , Cumarínicos/análise , Ácido Elágico/análise , Frutas/química , Ácido Gálico/análise , Taninos Hidrolisáveis/análise , Fenóis/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Clin Chim Acta ; 421: 170-6, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23524033

RESUMO

BACKGROUND: Glutathione peroxidase (GPx) is a significant antioxidant enzyme that plays a key role in protecting the body from reactive oxygen species (ROS) and their toxicity. As a biocatalyst, the enzyme has been shown to reduce hydrogen peroxide to water and lipid hydroperoxides to their respective alcohols. The increased levels of ROS in patients with diabetes have been speculated to arise, in part, from alterations in the activity of glutathione antioxidant enzymes, perhaps, by mechanisms such as the glycation of the protein, in vivo. METHODS: Under physiological conditions of temperature and pH, we investigated the susceptibility of human glutathione peroxidase to glycation, determined the effects of glycation on the physical and kinetic properties of the enzyme, and identified the protein's vulnerable amino acid sites of glycation. RESULTS: Circular dichroism, UV and mass spectrometry studies revealed that methylglyoxal and DL-glyceraldehyde are potent glycators of glutathione peroxidase; destabilizing its structure, altering its pH activity and stability profiles and increasing its Km value. CONCLUSIONS: In comparison to DL-glyceraldehyde, methylglyxol was a more potent glycator of the enzyme and was found to nonenzymatically condense with Arg-177, located near the glutathione binding site of GPx.


Assuntos
Arginina/química , Glutationa Peroxidase/química , Gliceraldeído/química , Fragmentos de Peptídeos/análise , Aldeído Pirúvico/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Eritrócitos/química , Eritrócitos/enzimologia , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Ligação Proteica , Soluções , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
14.
Bioorg Chem ; 46: 1-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247254

RESUMO

Melamine (1,3,5-triazine-2,4,6-triamine) is employed in the manufacture of plastics, laminates and glues, yet, it has been found sometimes added illegally to dairy products to artificially inflate foods' protein content. In 2008, dairy products adulterated with melamine were blamed for the death of several infants in China, a situation that forced Beijing to introduce stricter food safety measures. The objectives of this study were threefold: (1) to investigate the susceptibility of the amine groups of melamine to glycation with D-galactose, D-glucose and lactose, sugars commonly found in milk, (2) to study the rate and extent of melamine's glycation with methylglyoxal, glyoxal and DL-glyceraldehyde, three highly reactive metabolites of D-galactose, D-glucose and lactose, and (3) to characterize, using mass spectrometry, the Advanced Glycation Endproducts (AGEs) of melamine with sugars found commonly in milk and their metabolites. Incubation of D-galactose, D-glucose and lactose with melamine revealed that D-galactose was the most potent glycator of melamine, followed by D-glucose, then lactose. Methylglyoxal, glyoxal, and DL-glyceraldehyde glycated melamine more extensively than D-galactose, with each yielding a broader range of AGEs. The non-enzymatic modification of melamine by sugars and sugar-like compounds warrants further investigation, as this process may influence melamine's toxicity in vivo.


Assuntos
Carboidratos/análise , Contaminação de Alimentos/análise , Produtos Finais de Glicação Avançada/análise , Triazinas/química , Animais , Metabolismo dos Carboidratos , Galactose/análise , Galactose/metabolismo , Glucose/análise , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Gliceraldeído/análise , Gliceraldeído/metabolismo , Glicosilação , Glioxal/análise , Glioxal/metabolismo , Lactose/análise , Lactose/metabolismo , Leite/química , Leite/metabolismo , Aldeído Pirúvico/análise , Aldeído Pirúvico/metabolismo , Triazinas/metabolismo
15.
Anal Biochem ; 408(1): 59-63, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20816660

RESUMO

The accumulation of dicarbonyl compounds, methylglyoxal (MG) and glyoxal (G), has been observed in diabetic conditions. They are formed from nonoxidative mechanisms in anaerobic glycolysis and lipid peroxidation, and they act as advanced glycation endproduct (AGE) precursors. The objective of this study was to monitor and characterize the AGE formation of human immunoglobulin G (hIgG) by MG and G using ultraviolet (UV) and fluorescence spectroscopy, circular dichroism (CD), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). hIgG was incubated over time with MG and G at different concentrations. Formation of AGE was monitored by UV and fluorescence spectroscopy. The effect of AGE formation on secondary structure of hIgG was studied by CD. Comparison of AGE profile for MG and G was performed by MALDI-MS. Both MG and G formed AGE, with MG being nearly twice as reactive as G. The combination of these techniques is a convenient method for evaluating and characterizing the AGE proteins.


Assuntos
Produtos Finais de Glicação Avançada/química , Glioxal/química , Imunoglobulina G/química , Aldeído Pirúvico/química , Espectrometria de Fluorescência/métodos , Dicroísmo Circular , Humanos , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
16.
Anal Bioanal Chem ; 392(6): 1189-96, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791706

RESUMO

Dihydroxyacetone phosphate (DHAP) is a glycolytic intermediate that has been found to be significantly elevated in the erythrocytes of diabetic patients and patients with triosephosphate isomerase deficiency. DHAP spontaneously breaks down to methylglyoxal, a potent glycating agent that reacts with proteins and nucleic acids in vivo to form advanced glycation endproducts (AGEs). Like methylglyoxal, DHAP itself is also a glycating metabolite, capable of condensing with proteins and altering their structure or function. The objective of this investigation was to evaluate the susceptibility of nucleotides to nonenzymatic attack by DHAP, and to determine the factors influencing the rate and extent of nucleotide glycation by this sugar. Of the four nucleotide triphosphates (ATP, CTP, GTP and UTP) that were studied, only GTP was reactive, forming a wide range of UV and fluorescent products with DHAP. Increases in temperature and nucleotide concentration enhanced the rate and extent of GTP glycation by DHAP and promoted the heterogeneity of AGEs. Capillary electrophoresis, HPLC, and mass spectrometry allowed for a thorough analysis of the glycated products and demonstrated that the reaction of DHAP with GTP occurred via the classical Amadori pathway.


Assuntos
Fosfato de Di-Hidroxiacetona/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Guanosina Trifosfato/metabolismo , Soluções Tampão , Cromatografia Líquida de Alta Pressão/métodos , Fosfato de Di-Hidroxiacetona/química , Eletroforese Capilar/métodos , Fluorescência , Produtos Finais de Glicação Avançada/química , Glicosilação , Guanosina Trifosfato/química , Cinética , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Temperatura , Fatores de Tempo
17.
Anal Bioanal Chem ; 390(2): 679-88, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17965853

RESUMO

Methylglyoxal and glyoxal are generated from the oxidation of carbohydrates and lipids, and like D-glucose have been shown to nonenzymatically react with proteins to form advanced glycation end products (AGEs). AGEs can occur both in vitro and in vivo, and these compounds have been shown to exacerbate many of the long-term complications of diabetes. Earlier studies in our laboratory reported D-glucose, D-galactose, and D/L-glyceraldehyde formed AGEs with nucleosides. The objective of this study was to focus on purines and pyrimidines and to analyze these DNA nucleoside derived AGE adducts with glyoxal or methylglyoxal using a combination of analytical techniques. Studies using UV and fluorescence spectroscopy along with mass spectrometry provided for a thorough analysis of the nucleoside AGEs and demonstrated that methylglyoxal and glyoxal reacted with 2'-deoxyguanosine via the classic Amadori pathway, and did not react appreciably with 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine. Additional findings revealed that methylglyoxal was more reactive than glyoxal.


Assuntos
DNA/química , Desoxiguanosina/química , Glioxal/química , Nucleosídeos/química , Cromatografia Líquida de Alta Pressão , Enzimas/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Metilação , Estrutura Molecular , Nucleosídeos/síntese química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria , Temperatura
18.
Bioorg Chem ; 35(6): 417-29, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17937966

RESUMO

Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.


Assuntos
Produtos Finais de Glicação Avançada/química , Gliceraldeído/química , Guanosina Trifosfato/química , Soluções Tampão , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Glucose/química , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta , Temperatura
19.
Anal Biochem ; 360(2): 235-43, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17097593

RESUMO

Advanced glycation end products (AGEs) play a significant role in the pathophysiology of diabetes leading to such conditions as atherosclerosis, cataract formation, and renal dysfunction. While the formation of nucleoside AGEs was previously demonstrated, no extensive studies have been performed to assess the effect of AGEs on DNA structure and folding. The objective of this study was to investigate the nonenzymatic glycation of two DNA oligonucleotide duplexes with one duplex consisting of deoxy-poly(A)15 and deoxy-poly(T)15 and the other consisting of deoxy-poly(GA)15 and deoxy-poly(CT)15. With D-glucose, D-galactose, D/L-glyceraldehyde, and D-glucosamine serving as the model glycating carbohydrates, D-glucosamine was found to exhibit the greatest effect on the stability and structure of the oligonucleotide duplexes, a finding that was confirmed by circular dichroism. The nonenzymatic glycation of deoxy-poly(AT) by D-glucosamine destabilized the deoxy-poly(AT) structure and changed its conformation from A form to X form. D-glucosamine also altered the conformation of deoxy-poly(GA)15 and deoxy-poly(CT)15 from A form to B form. Capillary electrophoresis and ultraviolet and fluorescence spectroscopy revealed that, of the various purines and pyrimidines, 2'-deoxyguanosine and guanine were most reactive with D-glucosamine. The nonenzymatic modification of nucleic acids warrants further investigation because this phenomenon may occur in vivo, altering DNA structure and/or function.


Assuntos
Dicroísmo Circular/métodos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/análise , Eletroforese Capilar , Galactose/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Gliceraldeído/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Espectrofotometria Ultravioleta
20.
Bioorg Chem ; 35(1): 11-24, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16970975

RESUMO

Glyoxylate is a 2 carbon aldo acid that is formed in hepatic tissue from glycolate. Once formed, the molecule can be converted to glycine by alanine-glyoxylate aminotransferase (AGAT). In defects of AGAT, glyoxylate is transformed to oxalate, resulting in high levels of oxalate in the body. The objective of this study was 2-fold. First, it was to determine, if akin to D-glucose, D-fructose or DL-glyceraldehyde, glyoxylate was susceptible to non-enzymatic attack by amino containing molecules such as lysine, arginine or glucosamine. Second, if by virtue of its molecular structure and size, glyoxylate was as reactive a reagent in non-enzymatic reactions as DL-glyceraldehyde; i.e., a glycose that we previously demonstrated to be a more effective glycating agent than D-glucose or D-fructose. Using capillary electrophoresis (CE), high performance liquid chromatography and UV and fluorescence spectroscopy, glyoxylate was found to be a highly reactive precursor of advanced glycation like end products (AGLEs) and a more effective promoter of non-enzymatic end products than D-glucose, D-fructose or DL-glyceraldehyde.


Assuntos
Arginina/química , Glucosamina/química , Produtos Finais de Glicação Avançada/química , Glioxilatos/química , Lisina/química , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Frutose/química , Glucose/química , Gliceraldeído/química , Lisina/análogos & derivados , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...